A nonlinear lower bound for constant depth arithmetical circuits via the discrete uncertainty principle

نویسندگان

  • Maurice J. Jansen
  • Kenneth W. Regan
چکیده

We prove a super-linear lower bound on the size of a bounded depth bilinear arithmetical circuit computing cyclic convolution. Our proof uses the strengthening of the Donoho-Stark uncertainty principle [DS89] given by Tao [Tao05], and a combinatorial lemma by Raz and Shpilka [RS03]. This combination and an observation on ranks of circulant matrices, which we use to give a much shorter proof of the Donoho-Stark principle, may have other applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers

Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...

متن کامل

Robust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers

Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...

متن کامل

On Proving Circuit Lower Bounds against the Polynomial-Time Hierarchy

We consider the problem of proving circuit lower bounds against the polynomialtime hierarchy. We first revisit a lower bound given by Kannan [Kan82], and for any fixed integer k > 0, we give an explicit Σp2 language, recognizable by a Σ p 2-machine with running time O(nk 2+k), that requires circuit size > nk. Next, as our main results, we give relativized results showing the difficulty of provi...

متن کامل

A New Lower Bound Technique for Quantum Circuits without Ancillæ

We present a technique to derive depth lower bounds for quantum circuits. The technique is based on the observation that in circuits without ancillæ, only a few input states can set all the control qubits of a Toffoli gate to 1. This can be used to selectively remove large Toffoli gates from a quantum circuit while keeping the cumulative error low. We use the technique to give another proof tha...

متن کامل

A New Lower Bound Technique for Quantum Circuits without Ancillae

We present a technique to derive depth lower bounds for quantum circuits. The technique is based on the observation that in circuits without ancillæ, only a few input states can set all the control qubits of a To↵oli gate to 1. This can be used to selectively remove large To↵oli gates from a quantum circuit while keeping the cumulative error low. We use the technique to give another proof that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 409  شماره 

صفحات  -

تاریخ انتشار 2008